Given an unsorted integer array, find the smallest missing positive integer.

**Example 1:**

Input: [1,2,0] Output: 3

**Example 2:**

Input: [3,4,-1,1] Output: 2

**Example 3:**

Input: [7,8,9,11,12] Output: 1

**Note:**

Your algorithm should run in *O*(*n*) time and uses constant extra space.

## Solution With comments

public class Solution { public int firstMissingPositive(int[] nums) { int n = nums.length; // 1. mark numbers (num < 0) and (num > n) with a special marker number (n+1) // (we can ignore those because if all number are > n then we'll simply return 1) for (int i = 0; i < n; i++) { if (nums[i] <= 0 || nums[i] > n) { nums[i] = n + 1; } } // note: all number in the array are now positive, and on the range 1..n+1 // 2. mark each cell appearing in the array, by converting the index for that number to negative for (int i = 0; i < n; i++) { int num = Math.abs(nums[i]); if (num > n) { continue; } num--; // -1 for zero index based array (so the number 1 will be at pos 0) if (nums[num] > 0) { // prevents double negative operations nums[num] = -1 * nums[num]; } } // 3. find the first cell which isn't negative (doesn't appear in the array) for (int i = 0; i < n; i++) { if (nums[i] >= 0) { return i + 1; } } // 4. no positive numbers were found, which means the array contains all numbers 1..n return n + 1; } }

**Time Complexity: O(n)**

**Space Complexity: O(1)**

## One thought on “First Missing Positive”